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In this article we propose a new overview on the theory of integrable systems based on sym- 
metry reduction of the anti-self-dual Yang-Mills equations and its twistor correspondence. First, 
the non-linear Schrrdinger (NS) equations and the Korteweg de Vries (KdV) equations are 
shown to be symmetry reductions of the anti-self-dual Yang-Mills (ASDYM) equation with 
real forms of SL(2, C) as gauge groups. 

We obtain a twistor correspondence between solutions of the NS and KdV equations and 
certain holomorphic vector bundles with a symmetry on the total space of the complex line 
bundle of Chern class two on the Riemann sphere. Remarkably, when the Chern class is in- 
creased, the correspondence extends to the NS and KdV hierarchies. If the symmetry condition 
is dropped we obtain a twistor correspondence for a hierarchy for the Bogomolny equations, 
which yields the KdV and NS hierarchies when the symmetry is imposed. 

The inverse scattering transform is shown to be a coordinate realization of the twistor cor- 
respondence. Both the pure solitons and the solitonless cases are treated. The k-soliton solu- 
tions arise from the kth "Ward ansatze" in an analogous fashion to the monopole solutions. 
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O. Introduction 

It is a special pleasure for us to have this opportunity to pay our respects to 
Roger Penrose on the occasion of his sixtieth birthday. Roger Penrose has been a 
constant source of inspiration to us and indeed has generated most of the ideas 
on which we work. We hope that this paper will serve as yet another example of 
how Roger Penrose's ideas have had unexpected (and we hope significant) ap- 
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plication in fields far from those for which they were originally intended. Fun- 
damental to this article are twistor constructions for the solution of non-linear 
partial differential equations. The prototype for these constructions is Roger 
Penrose's non-linear graviton construction [ 1 ]. 

This paper is part of  a programme that aims to reduce the theory of integrable 
systems to the study of symmetry reductions of the self-dual Yang-Mills equa- 
tions and its twistor correspondence. There are obstructions to this programme 
as it has not yet been possible to obtain the Kadomtsev-Petviashvili equations or 
the Davey-Stewartson equations in 2 + 1 dimensions as symmetry reductions of 
the self-duality equations. However, if we restrict ourselves to a working pro- 
gramme of reformulating the theory of integrable systems in one or two dimen- 
sions there is, as yet, no serious obstruction *. 

There are two parts to this programme: 
(A) Classification. One would like to show that all integrable systems in one 

and two dimensions can be obtained from the self-dual Yang-Mills equations in 
four dimensions. More precisely we would like to see that all integrable systems 
in one and two dimensions arise from imposing symmetries on the self-dual Yang- 
Mills equations and then putting certain constants of integration and the residual 
gauge freedom into a normal form. For many systems in one and two dimensions, 
it is sufficient to consider reductions of the Bogomolny hierarchy, a system of 
equations derived in section 2 of this paper related to the reduction of the self- 
dual Yang-Mills equations in four dimensions by one non-null translation. 

(B) Unification of the theory. One would like to see that the diverse and intri- 
cate techniques that have been brought to bear on integrable systems can be 
understood as specializations or extensions of the twistor constructions that play 
such a significant role in the theory of the self-duality equations. 

In a series of articles Ward [ 2-4 ] assembled a collection of integrable systems 
that arise as symmetry reductions of the self-dual Yang-Mills equations. In two 
dimensions these include the sine-Gordon equations, the chiral model, the non- 
linear sigma model, the Ernst equations and the Toda field theory. Subsequently, 
in ref. [ 5 ] we showed that the Korteweg-de Vries (KdV) equations and the non- 
linear Schr~Sdinger (NS) equations, perhaps the most basic integrable systems, 
are also reductions of the self-dual Yang-Mills equations. Nevertheless, much 
work remains to fulfill part A (above) of the programme. A major difficulty is 
the question of the definition of an integrable system, and one will probably have 
to be satisfied with merely showing that certain large classes (such as the classes 
discovered by AKNS, AKS and Drinfeld and Sokolov, for example) arise from 

* Even here there are difficult ies--  the Landau-Lifschitz model's spectral parameter lies on an ellip- 
tic curve, whereas spectral parameters of reductions of the self-dual Yang-Mills equations generally 
lie on the Riemann sphere. This example is less problematic, however, as it nevertheless has a 
twistor construction with a minitwistor space that is the total space of a line bundle over an elliptic 
curve rather than a sphere as in this paper (see Carey, Mason and Singer, preprint).  
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the Bogomolny hierarchy - -  it will presumably always be possible to find a system 
that one might like to call integrable but that will fall outside the scope of any 
given scheme. 

The twistor constructions are correspondences between solutions of  the field 
equations and certain holomorphic vector bundles on complex manifolds, twis- 
tor spaces. These correspondences are geometric generalizations of the inverse 
scattering transform. Such constructions have played a central role in the theory 
of the self-dual Yang-Mills equations [ 6-9 ]. Reductions of the self-dual Yang- 
Mills equations have a reduced twistor correspondence (see ref. [ 10 ] for the re- 
duced twistor correspondence for the Ernst equations). In this article we present 
the twistor construction for the Bogomolny hierarchy and its reductions to that 
for the non-linear Schr6dinger and Korteweg-de Vries equations. 

This paper is a long version of  ref. [5] with a more detailed investigation of 
the various structures and their relation to twistor theory. We first show that the 
KdV and NS equations are reductions of the anti-self-dual Yang-Mills 
(ASDYM) equations on E4 with a metric of signature (2,2). The gauge group is 
taken to be one of the real forms of SL (2, C) and the solutions are required to be 
symmetric under a timelike translation and a null translation that is orthogonal 
to the time direction. Modified KdV arises from a different gauge choice in the 
reduction. We then describe how the standard twistor correspondence for full 
anti-self-dual Yang-Mills fields can be reduced to give a correspondence for so- 
lutions of the NS and KdV equations. This is a correspondence between solutions 
of the equations and holomorphic vector bundles, satisfying certain symmetry 
and reality conditions, on an auxiliary complex manifold, (9 (2). The complex 
manifold, (9 (2),  is the total space of a complex line bundle, the holomorphic 
tangent bundle, on the Riemann sphere CP ~ [ (9 (n) denotes the complex line bun- 
dle on CP' with Chern class n ]. 

One of the basic features of an integrable (Hamiltonian) system is the exis- 
tence of  a sequence of constants of the motion in involution with respect to the 
system's poisson bracket structure. These provide Hamiltonians whose flows 
commute and can be realized as an infinite sequence of non-linear evolution 
equations that are symmetries of the original equations. In the case of the NS and 
KdV equations this leads to the NS and KdV hierarchies. The reduced twistor 
correspondence for the NS and KdV equations extends naturally to solutions of  
the NS and the KdV hierarchies. Solutions of the first r equations of one of the 
hierarchies correspond to certain holomorphic vector bundles on (9 ( I + r). In the 
case of the 1 (non-null) translation reduction of the self-dual Yang-Mills equa- 
tions, this extension leads to the "Bogomolny hierarchy", which reduces to the 
NS and KdV hierarchies after the imposition of a (null) symmetry and a special- 
ization of certain constants of integration. Solutions of the Bogomolny hierarchy 
correspond to certain holomo~phic vector bundles over regions in (9 (n). 

Finally we show that the inverse scattering transform in both the reflectionless 
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and solitonless cases can be understood as a transform from solutions of the equa- 
tions to patching data for the vector bundles on twistor space. We also see that 
the soliton solutions correspond to a class of  vector bundles on twistor space that 
are limiting cases of those that arise in Hitchin's study of monopoles using twistor 
methods. 

1. Korteweg-de Vries and non-linear Schriidinger equations as reductions of the 
self-dual Yang-Mills equations 

We work on R4 with co-ordinates xa=(x ,y ,v , t )  and metric d s2=dx  2 -  
dy2+ 2dr. dt of signature (2, 2 ) and a totally skew orientation tensor %boa= e tab~al. 
We will consider a Yang-Mills connection Da = 0~ -A~,  where the A~ are, for the 
moment, elements of the Lie algebra of SL (2, C ). The A~ are defined up to gauge 
transformations, A~ ~hA~h - ~ - ( O a h  ) h  - 1, where h =- h (x a) ~ SL (2, C ). The con- 
nection is said to be anti-self-dual when 

I cd ~%~ [D~, Dd] = -- [Da, Db] • 

This is equivalent to the following three commutator equations: 

[Dx+Dy, Dv]=O, ( l . l a )  

[Dx -D,,, Dx +Dy] + [Dr, D,] =0,  ( 1. lb)  

[Dx-De, D,]=O. ( l . l c )  

These follow from the integrability condition on the following linear system of 
equations: 

Los={Dx-Dy+2D~}s=O, L~s={Dt+2(D,.+Dy)}s=O, (1.2) 

where 2 is an affine complex co-ordinate on the Riemann sphere CP ~ (the "spec- 
tral parameter" ) and s is a two-component column vector. 

Let us put Dx = 0~- A, D~= 0~- B, D t  = Ot - C and Dy = Oy- D. 
Now require that the bundle and its connection possess two commuting sym- 

metries which project to a pair of  orthogonal spacetime translations, one timelike 
and one null. In our coordinates these are along O/Oy and O/Ou. We now restrict 
ourselves to gauges in which the components of the connection, (A, B, C, D),  are 
independent of u and y. We also impose the gauge condition A + D =  0. The gauge 
transformations are now restricted to SL (2, C )-valued functions of t alone under 
which A and B transform by conjugation, B--,hBh - ~ etc. With these assumptions 
the equations reduce to 

0:,B=0, [0x-2A,  0 , - C ] = 0 ,  20xA-[B,C]=O,B.  (1.3a,b,c) 

These equations follow from the integrability conditions on the reduction of the 
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linear system ( 1.2 ), 

Los= (Ox - 2 A + 2 B ) s = O ,  L~ s= (Or- C+2Ox)s= 0 .  (1.2'a,b) 

When eq. ( 1.3a) holds, B depends only on the variable t, so the gauge freedom 
may be used to reduce B to a normal form. The reduction of eqs. (1.3) are par- 
tially classified by the available normal forms. 

When B vanishes, the equations are trivially soluble, with the result that the 
connection may be put in the form Aadxa=A(t )  d ( x + y ) .  Eq. ( 1.1 ) is then au- 
tomatically satisfied. Henceforth we assume that B is everywhere non-vanishing. 
The matrix B then has just two normal forms: 

(ct) B=(01 00) , ( ~ ) B = t c ( 1 0  ? 1 ) "  

We assume that the type of B is constant. In the case of type [3, as t varies, x 
becomes a non-zero function of t. When B is in the Lie algebra of SU (2), SU ( 1, 1 ) 
or SL (2, ~ ), x is non-zero and is either real or pure imaginary. Case ct leads to the 
KdV equation, and case 13 leads to the non-linear Schr6dinger equation. 

An analysis of the reduction of the remaining equations leads to the following 
theorems (this analysis is contained in the appendices). 

Theorem a. The self-dual Yang-Mills equations are solved with B of  type a by the 
ansiitze: 

( (qx--qZ)x --2qx 
2A= ( q x q q  2 l q ) ,  2 C = \  2w - ( q x - q 2 , x ) ,  

where 4w=q.,~_,.-4qq~- 2q2,.+ 4qZq~, a subscript x or t denotes differentiation with 
respect to that variable, and provided that q satisfies 

4qt = qxxx - 6 ( qx ) 2 . 

With the definition u = - qx= ½Tr(BC) we obtain the Korteweg-de Vries equation 

4ut = ux_~.~ + 12uux. 

Conversely, every solution o f  the equations for type a, with Tr(AB) everywhere 
non-zero, may be reduced to this form, at worst after suitable co-ordinate and gauge 
transformations. [When Tr(AB) is identically zero, the equations are explicitly 
soluble.] [] 

Remarks. 
( 1 ) The modified KdV equations can be obtained by a different choice of  gauge. 

We still require that B be in the above normal form, but instead of setting A + D =  0, 
we require that A + D is strictly lower triangular and that A be upper triangular. 
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This can be implemented with a gauge transformation of the form 

o=('+ ?) 
The equations can then be reduced in such a way that the basic dependent vari- 
able is the top left entry of.4, which satisfies the modified KdV equation as a 
consequence of the self-dual Yang-Mills equations. 

(2) The Drinfeld-Sokolov form of the linear system can be obtained by a dif- 
ferent gauge transformation of the above form in which the function g is chosen 
so as to eliminate the diagonal components of.4. 

Theorem 13. 
ansatz: 

provided ¢/and ~ satisfy 

2/¢q/t = I/t.~ + 2 ~ 2 ~ ,  

The self-dual Yang-Mills equations are solved, with B o f  type fl, by the 

2xC= (~.~ _ ¢ t ~ ) ,  

(1.4) 

and 2x= I or - i .  Conversely, every solution o f  the equations for type fl may be 
reduced to this form, at worst after suitable gauge and co-ordinate 
transformations. [] 

When A, B and C are in the Lie algebra of SL(2, ~),  all quantities may be taken 
to be real, 2a:= 1 and eq. (1.4) becomes the pair of  coupled equations for real 
p =  g and r=  - ~ ,  

Pt =Pxx -- 2p 2r, r, = - rx_~ + 2r2p. 

When A, B and C are in the Lie algebra of SU (2), one has 2x= - i ,  and ~ is the 
complex conjugate of ~,. Equation ( 1.4) then becomes just the following: 

i¢/, = - ¢&, - 2  ] ~/12¢,. (1.5) 

Equation ( 1.5 ) is the non-linear SchrSdinger equation for the unknown ¢t, with 
an attractive self-interaction. 

For the SU ( 1, 1 ) case, one has 2x=  - i and ~ is the negative complex conjugate 
of ¢/. Then eq. (1.4) becomes the following: 

i9,, = - 9%~ +21 ¢/12~u. (1.6) 

Equation (1.6) is the non-linear Schr/Sdinger equation for the unknown ¢, with 
a repulsive self-interaction. 

The proof of these results in the forward direction follows from direct calcula- 
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tion. The converses require more work, which is presented in appendices A and 
B. 

2. The twistor correspondences and the Bogomolny hierarchies 

The information of the general local analytic solution to the anti-self-dual Yang- 
Mills equations may be encoded in the global analytic structure of certain holo- 
morphic complex vector bundles over suitable domains in twistor space PT, which 
is complex projective three-space CP 3 [6 ]. Rather than describe the original cor- 
respondence, we shall derive a generalization of its reduction by a non-null sym- 
metry. This will give the correspondence for the Bogomolny hierarchy. 

In this section all spaces and structures will be taken to be holomorphic, thus 
will be taken to be a holomorphic function of the complex variables x and t etc. 

When a single non-null translational symmetry (i.e. along 0.,, as in section 1 ) is 
imposed on the anti-self-dual Yang-Mills system, the resulting equations are called 
the Bogomolny equations. Solutions of these equations will be seen to correspond 
to bundles invariant under the corresponding symmetry of the twistor space. The 
action of the symmetry on the relevant domain in PT has no fixed points so that 
invariant bundles are the pullback of bundles on the quotient of the domains by 
the symmetry. We shall denote the largest such quotient by (9 (2); this has become 
known as minitwistor space. It is a complex line bundle of Chern class two fibred 
over the Riemann sphere, CP ~ (strictly speaking, it is an affine bundle - -  the 
choice of a zero section corresponds to a choice of origin in C 3 ). 

Solutions of the Korteweg-de Vries and non-linear Schrrdinger equations are 
obtained when we impose the further null symmetry (along ~ in section 1 ) and 
so correspond to certain (rank-2) holomorphic vector bundles over (9(2), on 
which we have the action of  an additional symmetry, corresponding to this extra 
symmetry. It is not possible to divide out directly by the action of this symmetry 
for it completely fixes a fibre of (9 (2). Indeed, we shall see later that important 
features of the correspondence reside in the structure around this fibre. 

In order to describe the hierarchies we shall take our twistor spaces to be the 
complex line bundles of Chern class n, (9 (n). We shall see that, for (9 (2), the C 3 
with coordinates (v, x, t) on which the (complexified) Bogomolny equations are 
defined is the space of global holomorphic sections of (9 (2) over the Riemann 
sphere, CP ~. If (9(2) is replaced by (9(n), the affine bundle of Chern class n>~2 
over the Riemann sphere, the corresponding space of such holomorphic sections, 
F(  (9 (n) ) ,  is ¢"÷ ~. If one now studies holomorphic vector bundles over (9 (n), we 
will see that they encode the information of gauge equivalence classes of solutions 
to a system B (n) of non-linear partial differential equations on C "+~ written out 
explicitly in eq. (2.5) below. The system B(n) is included (non-canonically) in 
the system B (n + I ), so it is natural to let n go to infinity. This gives, by defini- 
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tion, B(oo), the Bogomolny hierarchy. We will now "derive" the Bogomolny hi- 
erarchy from holomorphic vector bundles on ¢ (n). 

2.1. THE TWISTOR CORRESPONDENCE FOR THE BOGOMOLNY HIERARCHY 

Let • (n) denote the twistor space, the complex line bundle of Chern class n >/1, 
over the Riemann sphere, CP ~. The Riemann sphere, CP t, can be represented by 
means of stereographic projection as C u oo with coordinate A on C and 2' = 1/2 
a coordinate on C' = { C u o o } - { 0 } .  The line bundles, d~(n), can then be given 
coordinates (/z,2) in the region fibred over C and by ( / z ' , 2 ' ) =  (/z/2 n, 1/2) in 
the region fibred over C'. The projection p : tP (n)--,CP I is given by (/~, 2)--,A in 
these coordinates. 

Let F(n  ) be the space of global holomorphic sections of d~ (n). It can be seen 
that F (n )  -- C" + 1 as follows. A point i of F (n ) ,  i : CP ~ --, d~ (n),  can be repre- 
sented b y / t = i ( t ,  2) is a polynomial of degree n in 2 with coefficients t,  i=0,  ..., n: 

i f (k )  = ~ tk 2k . (2.1) 
k=0 

On C',/z' = Y. ~=o tk (2')n--k, which is regular at 2 = oo, so these sections are indeed 
global. These give all the global sections (further powers of 2 in (2.1) would give 
either poles at 2 = 0 or at 2 = eo). The coefficients (to,..., t,,) = (v, x, t, t3 .... , tn) are 
linear co-ordinates for F (n ) .  

A point Z of d9 (n) with coordinates (/t, 2) corresponds in F(n  ) to the twistor 
hyperplane Z'z of all holomorphic sections passing through Z: 27z consists of  those 
t,- satisfying (2.1) for fixed (a(2) ,  2) = (/1, 2). 

Definition. For an open region, R, of F (n  ), denote by ¢ (n) R the region in d~ ( n ) 
consisting of  all Z such that 27z intersects R. The domain R will be said to be 
suitable if each 27 z n R is homotopically and analytically trivial and if the subset 
of  F(n  ), consisting of sections lying in d~ (n) R, coincides with R itself. 

We now prove the following theorem: 

Theorem 2.1. For R suitable, let E be a vector bundle over O ( n ) R with structure 
group SL ( m, C ) such that its restriction to any holomorphic section of  • ( n )R over 
CP ~ is trivial. Each such E determines and is determined by a gauge equivalence 
class of  solutions o f  a system of  non-linear differential equations on R, the nth level 
o f  the Bogomolny hierarchy, B ( n ), as defined in eqs. (2.4) and (2.5) below. 

Remark. The assumption that E be trivial on a holomorphic section is satisfied 
generically in the sense that for a general choice of E, E will be trivial on every 
section, a, corresponding to points in all but a complex codimension-one subset 
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of R. This follows from the fact that holomo~hic  bundles on CP ~ with zero Chern 
class are generically trivial. The fields satisfying B(n)  will have rational singular- 
ities on this codimension-one subset in a suitable gauge. One need only move the 
region R away from this subset in order to satisfy the requirements of the theorem. 

Proof We shall use the Cech description of the bundle: choose an open Stein 
cover, { U~}, of • (n)R, where the numerical index ot ranges over the number of 
sets in the cover (for example, the cover Uo=tP(n)Rc~{2~co} and U~= 
¢ ( n )  c~ {2~0} is often adequate so that a = 0 ,  1 ). 

By definition, a holomorphic rank-m vector bundle, E, when restricted to a 
Stein open set U., is holomorphically trivialized by a framef,~ of E over U,~, 

f~, : E I u . = U ~ x C " .  

On each overlap, U.c~ Up, one must also have f,~=P.pfa, where P,~p(p,2) is a 
SL ( m, C)-valued holomorphic function on U~ c~ Up, often referred to as a patch- 
ingfunction. The ensemble of all the patching functions, P=p, obey on any triple 
intersection, U,~c~ Upc~ Ur, the compatibility (a non-linear version of the Cech 
cocycle) condition P ,~P~=  Par and conversely any such system of functions P,~p 
satisfying the compatibility condition, determines a bundle E. 

If we were to choose different trivializations,f ~, =g~,f~,, where g,~ are SL (m, C)- 
valued functions on U,~, then P,~p would be replaced by P'~p =g~P~,pg~ ~. Thus 
P~a and P~p determine the same bundle. A bundle E is trivial when E--- 
tP (n)R ×C m, i.e., there exists a global frame, f This implies that there exist g .  
with f,~= g~,f so that P,~p = g,~g ~ ~ 

In order to construct the solutions of the B ogomolny hierarchy on C "+~, restrict 
the patching functions P.p to any section/z = tr(t,-, 2), corresponding to a point t~ 
of R. By assumption, E is trivial on/t=tr ,  so that we have SL(n, C)-valued func- 
tions s .  (ti, 2) (depending on 2 and t~), satisfying the following relations on each 
{/~= a} c~ U~c~ U~: 

s.(t~, 2) =P.p(a(t~,  2), 2)sp(t~, 2 ) .  (2.2) 

Now the polynomials a(t~, 2) are annihilated by the differential operators Vk = 
Ok--2ak_t, l<~k<~n, where Ok is the co-ordinate derivative O/Otk. Thus the 
P~,p(tr(t~,2),2) are annihilated by each operator Vk. Define the quantities 
7~. (ti, 2) by the formula 

V~s,~(t~, 2) =s.(t~, 2)r~(t,, 2) .  (2.3) 

Then applying Vk to eq. (2.2) one obtains immediately y~-(ti,k)=7~.(t~,2) on 
each overlap region a n  U,~c~ Up. Thus there is a function, 7k(t~, 2), defined for all 
2 such that restricted to any a n  U,~, 7k(t;, 2,/Z) agrees with y~(t~,2,/~). The quan- 
tity 7k(t~, 2) is regular for all 2eC, and ( 1/2)7k is regular as 2~oo (the only diffi- 
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culty with 7k as 2--,m is the linear dependence of Vk on 2), SO that by a minor 
extension of Liouville's theorem, it is linear in 2, so that one has 7k(t~, 2) =Ak + 
2Bk_ 1, for some Ak and Bk_ t, which depend only on ti. Putting s equal to s~ ( t~, 2 ), 
for some c~, eq. (2.3) shows that s is a solution to the following linear system: 

LkS--(Ak--XDk_I)s=O, l <<.k<~n, (2.4) 

where 

ZIk=Ok--Ak,  Dk_ I = O k _  I - - B k _ l ,  1 <~k<~n . 

Note that in this section the matrices Ak, Bk_ I, etc. are understood to be acting 
on the right. Equation (2.4) defines the linear system for the nth level of the 
Bogomolny hierarchy. The integrability conditions for this linear system define 
the field equations for B (n), the nth level of the Bogomolny hierarchy. Thus B (n) 
consists of the following commutator equations: 

4,1 =0, 

[ D j - l , D k - i ] = O  , 

[Ak, Dj_, ] -- [Aj, Dk_, ] =0,  l<~k<~n. 

(2.5a) 

(2.5b) 

(2.5c) 

The equations are gauge invariant under the transformation A k - . h - l A k h  - 
h - 1 Ok h and Bk ~ h - I Bk h -  h - ~ Ok h. This corresponds to the freedom in the choice 
o f s , ,  s , ~ s ' ,  =s ,h ,  with h an SL(m, C)-valued function of the ti alone (h must 
be global and holomorphic in ). and is thus independent of 2 by Liouville's theo- 
rem). The differences Ak--Bk, 1 ~< k ~  n -  1, are canonical, transforming accord- 
ing to the adjoint representation. 

From E, therefore, we have obtained a gauge equivalence class of solutions of 
the system B(n) .  It can be seen that this solution is independent, modulo gauge 
transformations, of all choices made. 

Conversely, given an analytic solution of B ( n )  on R for R suitable, one may 
construct such a bundle E on d~ (n) R as follows. 

For any fixed twistor, Z =  (/~, 2), the equation Of Zz  is/z = a(t~, ;t), where a(ts, ).) 
is given in eq. (2.1). Since the vector fields Vk kill a(t~, 2), they are tangent to 
any such twistor plane, for any fixed 2 and/z; there are n such (independent) 
vector fields which span the tangent space of the hyperplane Zz. Given a solution 
of eq. (2.5) on R, construct a vector bundle E on • (n) R by defining the fibre at 
Z e ¢ ( n ) R ,  Ez, to be 

Ez  = {solutions Of LkS= ( Vk --Ak +2Bk_ 1 )S=0 on Zz  c~ R } ; 

the linear system, eq. (2.4), defines a linear connection on every Zzc~R, which 
has zero curvature, by virtue of eqs. (2.5). Since Szc~R is homotopically trivial, 
there is no holonomy, so eq. (2.4), considered globally on each Xzc~R, becomes 
the defining equation for the fibre, at each Z, o fa  holomorphic vector bundle, E, 
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over ZR. It is easily seen that E is trivial when restricted to any section of ¢ (n)R 
over CP' and that this construction of E from the solution of eq. (2.5) is the 
inverse of the construction of the solution of eq. (2.5) from a given E, given 
above, r] 

The case n=  1. B( 1 ) is vacuous, so the theorem amounts to the encoding of  the 
information of  an arbitrary analytic vector bundle with analytic connection in 
two dimensions, into the structure of a vector bundle over a domain in complex 
projective two-space. 

The case n = 2. B (2) gives the standard Bogomolny system. Equations (2.5) for 
B(2)  are 

[A,,A2]=0,  [Do, Dr] =0,  [A2,Do]-[A~,D~]=O. 

With the co-ordinate redefinitions to= v, t, =x ,  t2 = t, we can identify Do with Dr, 
d2 with Dt, D, with D x - D  and A, with Dx+D. Then eqs. (2.5), for the case n=2 ,  
becomes eq. ( 1.1 ) in which the operator 1).,, is replaced by the Lie algebra ele- 
ment, - D .  This corresponds to imposing the symmetry along 0y to (1.1) and 
requiring that A, B, C and D depend only on (v, x, t). This is, by definition, the 
standard Bogomolny system. 

To reduce further to the systems corresponding to the Korteweg-de Vries and 
non-linear Schr6dinger equations, we had to specialize to the case where the group 
is SL(2, C), impose a symmetry in the v (or to) direction and then impose a 
reality structure to bring SL (2, C ) down to one of its real forms. Clearly, the bun- 
dle E must be of rank 2 to give rise to an SL(2, C) solution. The symmetry and 
reality conditions are implemented on E as follows. 

The symmetry condition on E. The action (to, t~, h,..., t,, ) ---) (to + a ,4, t2, h,..., t,,) 
induces the action (p, 2) --) ( p+a ,  2) on ¢ (2). Denote this action by K. This ac- 
tion K fixes the fibre of ¢ ( 2 )  over 2=oo  (2' =0 ) .  We are therefore unable to 
divide out by this symmetry action since ¢ ( 2 ) / K i s  not a manifold. (In the co- 
ordinates (/~ ', 2'  ) K acts by ( / f ,  2' ) --. (IZ' + oA % 2' ) so that the action fixes the 
fibre 2' = 0 to nth order. ) 

A holomorphic vector bundle E corresponds to a symmetric solution of B(n) 
if we can lift K to  act as a holomorphic one-parameter symmetry group,/~, of  E. 
If this is the case g induces an automorphism of each fibre of the vector bundle 
over the fixed points of K in tP (2),  ,l = oo. The Lie algebra generators of these 
automorphisms give rise to the canonical matrices Bo, which distinguish the non- 
linear Schr6dinger and Korteweg-de Vries equations (as discussed in section 1 ). 

Remark. Provided that B0 is always non-zero, if we l i f t / ( to  the principal bundle 
P(E) corresponding to E, it acts without fixed points, so that the quotient, 
P ( E ) / ~  of P (E)  by the lifted action o f g i s  a well-defined four complex dimen- 
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sional manifold, although it is no longer an SL(2,C)  bundle. The space 
P(E)/~ fibres over CP t with fibre SL(2,C)  over 24:0o, but with fibre 
SL(2,C)/{expaBo} over 2=oo  where {expaBo} denotes the subgroup of 
SL(2,C)  generated by Bo. SL(2,C)/{expaBo} is the complex line bundle of 
Chern class minus one [the Hopf  bundle or (9( - 1 ) ] over the Riemann sphere, 
ifBo is of type a, or the two-dimensional complex manifold consisting of  ordered 
pairs of non-coincident points on the Riemann sphere, ifBo is of type 13 (equiva- 
lently this latter fibre is the affine line bundle of Chern class minus one over the 
Riemann sphere). Away from the manifold )~=0o, P(E)/~ is simply a trivial 
vector bundle over the complex plane. Thus the entire structure of the solution is 
built into the complex manifold (P(E)/~ )la=~ and into its glueing into this 
trivial bundle. Similar remarks apply to the case of reducing SL (m, C ) by a sym- 
metry in the to direction. This discussion will be pursued further, elsewhere. 

The reality condition on E. (to, t~, t2, . . . ,  In)--* ( / o ,  Ii, /2, " " ,  / - n ) ,  complex conjuga- 
tion, maps Z'z to-re ,  where in the co-ordinates above, if Z =  (#,2) ,  then Z =  
(/i, ~-). If the gauge group is unitary for real t ,  then the complex conjugate of a 
solution of the linear system (2.4) on Zz is a solution to the linear system asso- 
ciated to E* on Zx. The complex conjugation therefore lifts to an anti-holo- 
morphic map from E to E*. Similarly for gauge group SL (2,~) the complex con- 
jugation lifts to an anti-holomorphic map from E to E. 

3. Symmetry reduction to the soliton hierarchies 

The soliton hierarchies are a sequence of  non-linear partial differential equa- 
tions representing the (commuting) Hamiltonian flows of the infinite sequence 
of conserved quantities on the infinite-dimensional Poisson manifold of rapidly 
decreasing initial data. The first such hierarchy, the Korteweg-de Vries hier- 
archy, was discovered by Gardner, Green, Kruskal and Miura [ 11 ]. Its equations 
have the form OkU=Pk(U), k>~ l, where the real variable u is a function of co- 
ordinates b,j>~ l, Ok----O/Olk and Pk(U) is a certain polynomial in the derivatives 
of  u with respect to the variable tl (where tl is often referred to as the "x"  coor- 
dinate) up to order 2 k -  1. When k=2 ,  one has P2(u) = 03u+6u 0~ u, so the cor- 
responding evolution is that of  the Korteweg-de Vries equation. The non-linear 
Schrfdinger hierarchy was found next [ 12 ]. Its equations read Ok ~/= Qk(~'), where 

is now complex and Qk(~) is a polynomial in the derivatives of ~ with respect 
to the variable t~ up to order k. When k =  2, one has ~//2 ~--- i0~ ~u+ 2iE I ~'12~/( E = -t- 1 ) 
giving the evolution of the non-linear Schr/Sdinger equation for the cases of the 
attractive (E = 1 ) and repulsive (e = - l ) potentials. These hierarchies are usu- 
ally analyzed under the assumption that all quantities rapidly decrease as I t~l --,0o. 
They will then be referred to as the standard hierarchies. 
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It is possible to give a simple expression for the equations of these hierarchies. 
Let g~, for k>~ O, be a collection of functions of real variables tj, j>~ l, with values 
in the Lie algebra g of a Lie group G. Then define the hierarchy g(oo) to be the 
system of partial differential equations 

J 
Ojgk---- ~ [g,,,,gj+k-m], j>_.l,k>~O, 

m = O  

where [ ,  ] is the Lie algebra commutator. These equations are invariant under 
the adjoint action of G on g, applied simultaneously to all the gk. When these 
equations hold one finds that quantities hk are constant, where the hk are defined 
by the formula 

k 

2hk= ~ h(gm, gk-m), k>~O. 
r=O 

Here h ( , )  is any symmetric bilinear form on g, invariant under the adjoint ac- 
tion of G on g. When G is semi-simple, we can take h to be the Killing form. We 
have the following theorem. 

Theorem 3.1. Let G be a real form ofSL(2, C ) and h the Killing form. 
I f  ho<O and hk=O Vk>_. 1, then g(oo ) is the standard non-linear Schr6dinger 

hierarchy for the attractive case when G= SU (2) and for the repulsive case when 
G is SU( 1, 1 ). I f  the hk, for k>_.O, are not zero, we obtain variations of these hier- 
archies appropriate to varying boundary conditions on the system. 

I f  ho> O, g( oo ) yields a hierarchy of evolutions for two real-valued functions, 
whose simplest evolution is the real analogue of the NS equation, eq. (1.4a). 

I f  ho=O, but h ~ O  and all the other hk, k>_.2, are zero, we find the standard 
Korteweg-de Pries hierarchy. I f  the hk with k >~ 2 are not zero, we obtain variations 
of the KdV hierarchy, appropriate to varying boundary conditions on the system. 

The special case where both ho and ht vanish has not yet been examined in detail. 

Theorem 3.2. The reduced Bogomolny hierarchy, B( oo ), where all quantities are 
independent of to, coincides with g( oo ). 

Results analogous to theorem 3.1 appear in many places in the literature (see, 
for example, refs. [ 13-15] ). We will prove theorem 3.2 first and then theorem 
3.1. 

Proof of theorem 3.2. We consider the Bogomolny hierarchy equations at level n, 
B(n),  subject to the requirement that the system possess a symmetry in the to 
direction. Choose a gauge such that all the quantities Ak and Bk_ ~, with k>_- 1, are 
independent of the variable to. Equation (2.5a) implies that one may then take a 
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gauge in which all the quantities Bk, with k>_- 1, vanish. Define Ao= -Bo. The 
Bogomolny hierarchy ofeqs. (2.5) now becomes the following system: 

OkAo=0, OkAt=[Ao,Ak+l]+Ok+tAo, l<~k<~n-1, (3.1a,b) 

OjAk--OkAj--[Aj,Ak]=O, OkAj+~--OjAk+,=O, l<~j,k<~n. (3.2a,b) 

Denote this system by S(n). For simplicity, we begin by analyzing the limiting 
system, denoted by S ( ~ ) ,  where n is taken to infinity. Explicitly, S ( ~ )  is the 
following system: 

0kg0 =0,  Okgl=[go, gk+t], k>_-l, (3.3a,b) 

Ojgk--Okgj--[gj, gk]=O, Okgj+t--Ojgk+~=O, j,k>~l. (3.4a,b) 

Note that, if one puts Ak=gk, for O<~k<~n, one obtains a solution of S(n) ,  with 
the property that Ao is constant. Equations ( 3.3 ) and (3.4) may be directly solved 
for the quantities ajgk, with the result 

J 
Ojgk= ~ [g,,,,gj+k-,,,], j>tl,k>~O. (3.5) 

nl=O 

Indeed, eqs. (3.4a) and (3.4b) give the recursion relation Ojgk=~j_~gk+~ + 
[gj,gk], for all j>_.2 and k>_- 1. Then eq. (3.5) follows immediately [after using 
eqs. (3.4a) and (3.3) at the last step to eliminate the quantity O~gj+k-~ ]. Thus 
eqs. (3.3) and (3.4) yield eq. (3.5). Conversely, trivial algebraic identities show 
that, given quantities gk, for all 0 ~< k, obeying eq. (3.5), then eqs. (3.3) and (3.4) 
follow. Hence S(oo) is completely equivalent to the system satisfying just eq. 
(3.5), which is precisely the system g(oo ) described above. This proves theorem 
3.2. [] 

Note that S(2 ) yields eqs. ( 1.3 ) when one identifies t~ =x,  t2 = t, Ao=B, A~ =A 
and A2 = C. 

Proof of theorem 3.1. We will proceed by using eq. (3.5) to obtain the recursion 
operators for the NS and KdV hierarchies. 

Firstly some preliminaries. It is a straightforward algebraic identity that eq. 
(3.5) determines a consistent system of equations. We obtain OjOkg,,, = OkOjg,,,, 
V j, k>_- 1 and m i> 0 as a consequence of eq. (3.5). One may write down immedi- 
ately an infinite collection of constants of  the motion for the evolution given by 
eq. (3.5) - -  define the quantities hk by the formula 

k 

2hk= ~'. Tr(g,,,gk .... ), k>_.O. (3.6) 
n l = 0  

Here Tr denotes the matrix trace (or more generally some invariant bilinear form 
on the Lie algebra). It is a simple algebraic identity that Ojhk vanishes, for each 



L.J. Mason and G.A.J. Sparling / Twistor correspondences for the soliton hierarchies 257 

j>_. 1 and k>~0, when eq. (3.5) holds. 
When j =  1, eq. (3.5) gives a partial recursion relation for the quantities gk: 

O,gk--[g,,gk]=[go, gk+~], k>~O. (3.7) 

When go=0, one sees that, after a gauge transformation, the dependence of all 
quantities on the variable tt drops out and the system collapses to itself, with the 
role of the variable tk now played by tk+ I. So henceforth we assume that go is non- 
z e r o .  

We do not yet have a general description of the construction, by recursion, of 
the quantities gk for a general choice of group, G, so from now onwards, we shall 
again restrict ourselves to the case where G has the complexification SL (2, C). 

When Gc = SL (2, (::), go has the characteristic features that, whenever the equa- 
tion [go, Y] = 0  holds, then Y is proportional to go. The equation [go, Y] = Z  is 
solvable for Y, given Z if and only ifTr (goZ) =0.  Furthermore the matrix go may 
be taken to be either of type a or of type [3. The matrix go is of type [3 iff 
Tr (go) ~ 0 and of type a iff Tr (go) 2 = 0. We discuss these cases separately. 

Type [3. We shall use eqs. (3.6) and (3.7) to determine the gk inductively in 
terms of the constants hk and g~. 

Let I b forj>~ 2 be a given set of constants. Let g, be given arbitrarily except that 
h~-Tr(gogl ) is required to be constant and define 2ho =Tr(go) .  Suppose that 
the quantities gk have been found for all k<~m, such that eq. (3.7) holds for all 
k<m and such that eq. (3.6) holds for all k<m. Then, by induction, using eq. 
(3.6) one shows that the quantity Tr (go{ O~g,,, - [g~, g,,, ] } ) vanishes. Thus eq. 
(3.7), with k =  m, may be solved for the unknown g,,,+ ~, uniquely modulo scalar 
multiples of go. This ambiguity in g,,,+ t is removed by imposing eq. (3.7) with 
k=  m + I. By induction, therefore, gk is uniquely determined, for all k>~ 0, given 
go, g~ and all the h i for j>_- 2. 

From eqs. (3.6) and (3.7) we see that, in fact, gk is a polynomial in the deriv- 
atives with respect to tt up to order k -  l, of the entries of the matrix g~, which 
consist of two free functions. The evolution of these quantities with respect to tj 
is given by eq. (3.5) with k =  1, giving a hierarchy of evolution equations. One 
may present this argument more explicitly, as follows. Write out the matrices gk 
as follows: 

gk= (qk Pk ~, k>~O 
rk -- qk] 

so one has po=ro=0  and qo¢0 is a constant. Then eq. (3.5) gives the following 
system: 
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J 
ojp = E 

t~l=O 

J 

Ojq = E 
m=O 

J 
Ojrk= E 

trt=O 

2(qmPj+k--m--Pmqj+k-m), j>~ 1. k>~O . 

( p m r j + k - m - - r , , , P j + k _ . , ) ,  j>~ 1, k>~O, 

2(r,,.qj+k_,.--q,.rj+k_,,.). j>~ 1. k>~O . 

(3.8a) 

(3.8b) 

(3.8c) 

In particular the evolution of the quantities p~, q~ and r~ is found by putting k =  1 
in eqs. (3.8): 

Okql =0,  OkPl =2qoPk+t, Okrl =--2qork+l, k>~ 1 . (3.9) 

To determine the quantities Pk and rk, iteratively, we first write out eq. (3.7): 

2qOPk+ 1 = Oi Pk --2qlPk +2pl  qk, 

2qork+l=--Olrk--2qlrk+2rlqk, k>~O, (3.10) 

Ol qk =pt rk--rlPk, k >_-O . (3.11 ) 

Equations (3.10) and (3. I 1 ) give the required recursion relation: given Pk and 
rk, one first solves eq. (3.1 1 ) to determine qk and then (3.10) for pk+~ and rk+~ 
and iterates. 

This procedure is conveniently summarized by the following matrix recursion 
operator, for the quantities Pk+~ and rk+ t, which is obtained by eliminating qk 
between eqs. (3.10) and (3.11 ) using the inverse derivative operator 0 i- t : 

2 fPk+,'~ (O~--2q,--2p~OFtr, 2P, 0FXP, ) ( O k )  (3.12) 
qO~rk+lJ = --2rl 0i-¿rl --Ol--2ql+2rl 0i-lpl rk " 

Equation (3.12 ) holds for k>~ I. This expression is somewhat unsatisfactory, be- 
cause a boundary condition is hidden in the definition of the inverse derivative 
operator. It is thus better to use eq. (3.6), which immediately gives qk+ ~, given 
pj, qj and rj, for all j~< k. Writing out eq. (3.6) explicitly, one has: 

k-- l  

2qoqk+l=hk+t-- ~ (rm+lPk_m+qm+lqg_m), k>~O. (3.13) 
m=O 

[In eq. (3.13), the summation is understood to be vacuous when k=0 .  ] Equa- 
tions (3.10) and (3.13 ) give a complete recursion formula for the quantities Pk, 
qk and rk. 

In the case that the constants hk, for k>_- 1, are taken to be zero, and G is respec- 
tively either the group SU (2) or SU ( 1, I ), these equations give the standard non- 
linear SchrSdinger hierarchy, for the attractive and repulsive couplings, respec- 
tively [ 15 ]. Note that these constants automatically become zero if it is required 
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that all the matrices gk, for k>~ 1, vanish at infinity. 
Type ~. Next we turn to the case where go is of type ct. Then eq. (3.8) is to be 

analyzed, subject to the condition that Po = qo = 0 and ro = 1. Also eq. (3.6) gives 
the following equations: 

ho=0, hi =Pl ,  h2=p2+qal+hlrl  , (3.14) 

Pk+l + h t r k + 2 q l q k + r l P k  

k--2 

=hk+l- -  ~ (r , ,+~Pk-,n+q,,+lqk-m),  k>~2. (3.15) 
v t l ~  1 

In eq. (3.15), the summation is understood to be vacuous when k=  2. We will 
assume that the constant h~ is non-zero. To obtain the recursion formula, first 
write out eq. (3.7): 

2hi qk = - -  OI Pk +2ql Pk , (3.16a) 

2qk+l =Olrk +2qlrk--2rlqk,  k>~O , (3.16b) 

Pk+l - h i  rk = -- 01 qk--rl Pk, k>~O . (3.17) 

Using eqs. (3.16 ) and (3.17 ), we derive the following identity: 

Oi (Pk+ I +hi rk) = --2ql Ol qk--2rl (ql pk--hl  qk) • (3.18) 

Combining eqs. (3.17) and (3.18 ), we find the following expression for the 
quantity Pk+ ~: 

201Pk+l = - - O l ( r l P k ) - - 2 q l r l p k - - ( O 2 + 2 q l O i - - 2 h t r l ) q k .  (3.19) 

The quantity qk may be eliminated from eq. (3.19), using eq. (3.16a). Again 
employing the inverse derivative operator, we obtain the following compact re- 
cursion relation for the quantity Pk: 

4hlPk+l = ( 0 2 - - 4 X l  +20FtYl)Pk, k>~l , 

Yl = OlXl '  Xl =Olql + q 2 + h l r l  =20t ql +hE • (3.20) 

Equation (3.20) must be supplemented with boundary conditions to fix the in- 
verse derivative operator. Once Pk has been found, qk may be determined from 
eq. (3.16a) and then rk_~ from eq. (3.17). N o t e t h a t p 2 = - O ~ q ~ , s o t h a t p k i s a  
polynomial in the derivatives of q~ with the highest derivative term proportional 
to the ( 2 k - 3 ) t h  derivative of q~. As before, we may avoid the use of the inverse 
derivative operator if, instead of eq. (3.18 ), we use eq. (3.15 ). By adding eqs. 
(3.15 ) and (3.17 ), we obtain the formula: 

2pk+ 1 ~" hk+  1 - -  01 qk  - -  2ql qk - -  2rl Pk  

k - 2  

- ~ (rm+~Pk-s+qm+~qk-s), k>_.2. (3.21) 
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Note that this expression only involves the quantities rj, for j ~ k - I .  Thus the 
recursion procedure goes as follows: if all the quantities pj, qj and rj_ t are given, 
f o r j ~ k ,  k>~2, first Pk+l is determined by eq. (3.21); then rk is found from eq. 
(3.17) (provided that h, is a non-zero constant); finally qk+, is obtained from 
eq. (3.16b) and so on. This recursion is provided with the initial conditions 

Po=0, pl=ht, pz=--01ql ,  

qo=0, qi=ql, q2=(2hl)--l(O~ql--2qlOIql), 

ro= l ,  rl=h~-l(h2+Olq,-q~). (3.22) 

Thus every quantity is a polynomial in the derivatives of q,. We do not analyze 
the case where h~ vanishes, here. Finally the evolution of q, is obtained from eq. 
(3.8b), by putting k=  1. One finds the simple equation 

Okqt = --Pk+ 1, k>_- 1 . (3.23) 

Equations (3.20) and (3.23) agree with the standard recursion equations for the 
Korteweg-de Vries hierarchy (see, for example, ref. [ 15 ] ) establishing that the 
system g(oo), for go of type a, with the constant h~ non-zero, gives the standard 
Korteweg-de Vries hierarchy. Note that, if the boundary condition is that qt and 
all its derivatives are required to rapidly decrease as t~ goes to infinity, then all 
the constants hk with k>_- 3 must vanish. Also, eq. (3.23) for k = 2  is the following 
equation: 

02ql = - h 3 / 2 + h f l [ O 3 q , - 6 ( 0 1 q l ) E - 4 h 2  0 t q t ]  • (3.24) 

Differentiate this equation with respect to t, and put u=  - 0, q~. One obtains the 
equation 

0 2 u = h  i - l  [ 0 3 u q  - 12u 0, u - 4 h 2  01 u] . ( 3 . 2 5 )  

So the standard Korteweg-de Vries equation and its hierarchy is obtained in the 
rapidly decreasing case if all the constants hk, with k>_- 2, vanish. This completes 
the proof of theorem 3.1. [] 

Remark. Note that eq. (3.5) in many cases describes a system preserving a Pois- 
son structure. Specifically, let lower case Greek indices be used for the Lie algebra 
g. Let g have structure tensor C& ". Define the Poisson brackets 

{gT, g~} =O~,aPgJ+Z (3.26) 

(repeated Greek indices are summed over ). Equation (3.26) defines a consistent 
Poisson bracket structure, provided that the tensor D ,  & is skew and obeys the 
Jacobi identity, so that it gives a Lie algebra structure to g*, the dual to g. Then 
one finds that the flows given by eq. (3.26) preserve the Poisson structure if and 
only ifD~ #y is invariant under the adjoint action o fg  and Cm." is invariant under 
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the adjoint action of g*. Further, if hap is a symmetric tensor such that 
D~."Ph~p= Cy~ ~, then the flows are Hamiltonian, with Hamiltonians hk given by 
the formula 

k 

h a hk= ~ ,pg,ng~-,,,, k>_.O (3.27) 
I / ' l  ~ 0 

In particular, if G is semi-simple, hap may be taken to be the Killing form and 
Dr"P= Cr~"h P~, where h '~p is the inverse of hap and all the conditions are satisfied. 
Equation (3.27) defines the same hk as eq. (3.6). 

4. The relationship between the inverse scattering transform and the Penrose- 
Ward transform 

The inverse scattering transform proceeds, both for the NS and the KdV equa- 
tions, by studying the scattering problem for solutions of the linear system, eq. 
( 1.2' ). For the NS equation, eq. ( 1.2' ) is precisely the normal Lax pair as in ref. 
[ 14 ]. For the KdV equation, the first component, s~, of s is a solution of the 
Schrt~dinger equation (02.-2qx)s~ =2s~ that forms the basis of the normal Lax 
pair for KdV [the second component is given by s2 = (ax --q)st ]. We have seen, 
however, in the proof of theorem 2. I that (local) solutions of (1.2) correspond 
to (local) sections of  the vector bundle E on tP (2). Solutions of (1.2 ' )  corre- 
spond to sections of  the vector bundle that are invariant under the symmetry 
do = 0v in terms of their representation on spacetime, and hence are invariant un- 
der the lift to the bundle of the corresponding symmetry 0~ on twistor space. 
Therefore, solutions of the Lax pairs for the NS and KdV equations determine 
invariant local sections of the holomorphic vector bundle on twistor space. In this 
section we will see that the scattering data provide the patching data for the bun- 
dle in terms of local sections represented as solutions of ( 1.2' ). Thus the inverse 
scattering transform is a concrete realization of the Ward transform appropriate 
to rapidly decreasing boundary conditions. 

We shall restrict ourselves to the non-linear Schr/Sdinger equation in order to 
illustrate the basic ideas. The details for the KdV equation are more complicated 
and will be treated elsewhere. In this section we will consider the case where the 
scattering data have no discrete spectrum, just a continuous spectrum. In the next 
section we will consider the soliton solutions for which the scattering data are 
zero, but which have a non-trivial discrete spectrum. 

First we will summarize some facts from the standard theory of inverse scatter- 
ing; see ref. [ 14 ] for the proof of these results. 

We work with solutions ofeq.  (1.2 'a) of the linear system 
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(1.2’a) 

where S= (2) is a two-component column vector and ? is - for the attractive 
case and + for the repulsive case. This is the basic equation in the linear system 
for the non-linear Schrodinger equation as used in ref. [ 141. 

Ifs=(z) isasolutionofeqs. (1.2’),thensois 

j= s2 
(- > +s* ’ 

where by J(A), the complex conjugate function associated to f(A), we mean the 
holomorphic function 3(A) =fm. Note that s”= i S. 

For the purpose of the inverse scattering transform assume that ~40 “rapidly” 
as Ix]+03 and consider the solutions of eq. (1.2’a) that have the asymptotic 
forms 

S+-(e-y2), B,-(kJdv,2), asx++co, 

S---r (e-y2), 9--+ ( ,JAv,2), asx+-co. 

The scattering data consist of the functions a(A), b(A), n(A) and b(A) defined by 

s- =a(L)s+ +b(L)s^+, 9- = i b(A)s+ +d(/l)s^+ . (4.1) 

The determinant of a pair of solutions is independent of (x, t) as the connection 
matrices are trace free. We therefore have the identity det (sLt, jr ) = i 1. This 
yields 

adT b6= 1 . 

These solutions enjoy the following analytic continuation properties: 
eih/2s 

+ 
and e-ikv/2- s- are analytic in 1 for im 16 0 and all x , 

eLY/2s- and e-a”2J+ are analytic in 1 for im Aa 0 and all x , 

andas ]A(+awehave 

e&j2s+ + 0 ; +0(l), e-iAY’/2j- --) 0 0 1 +0(l), 

forimA<Oandallx, 

ew2s-‘-, 0 :, +0(l), e-Lv/2h + 0 :, +0(l), 

(4.2) 

(4.3) 

(4.4) 
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These properties follow by integrating eq. ( l .2 ' a )  to obtain a Volterra integral 
equation and then examining its convergence properties under iteration for dif- 
ferent values of A. See section 1.5 ofref. [ 14] for full details. 

Note that a(2)  = det (eV-"/2s_, e-~-~/2g+ ) is therefore analytic in the upper half- 
plane, and a(2)  is analytic in the lower half-plane. 

In the case where the potential is attractive [gauge group SU (2) ], it is possible 
that there are "bound state" solutions to (1.2 'a),  so that s+ and g_ are propor- 
tional at a collection of complex values of 2 with im 2 < 0 (this implies that s+ is 
exponentially decaying both as x ~  + oo and as x ~  - oo at that value of 2). For 
such values of 2, a ( ; t )=0 .  [Similarly it is possible that s_ and g+ are linearly 
dependent for some 2 with im 2> 0, at which values of 2, a ( 2 ) =  0. ] In the next 
subsection we treat the case where this does not happen, a (2) ~ 0; in the subse- 
quent one we will treat the case where b(2) =0,  but where there are values of;t at 
which a(2)  does vanish. 

4.1. NON-SOLITONIC SOLUTIONS 

Since s_ and g+ are linearly independent solutions of ( 1.2'a) for im ;t >10, they 
determine a 0,-invariant frame f~ for the vector bundle E on the twistor space 
(9 (2) defined on the intersection of im ;t >i 0 with the union of the sections cor- 
responding to real points in C 3. Similarly s+ and g_ determine a frame f~ on the 
region in (9 (2) given by the intersection of im 2 ~< 0 with the union of the sections 
corresponding to real points in C 3. However, the fall-off conditions (4.3) show 
that, for this frame to be regular as [;tl--,co in the relevant domains, we must 
include exponential factors to cancel the essential (exponential) singularity at 
;t = ~ .  As they stand, the factors of e u-~/2 are not functions on • (2),  but the func- 
tion eiu/a=exp[i(v+2x+22t)/2] is a function on ¢ ( 2 )  and agrees with e i~x/2 

when v and t are held constant. 
Thus there exist frames 

1 1 . Fu = ~ (ei~'/2s_, e-i"/2g+ ), F~ = ~ (e'U/2s+, e-iU/2g_ ) ,  

that are regular on 

Uu ={(/~,2)e  (9(2) I im2>10,# =v+x2+t2A2 for some real (v,x, t )} ,  

U~={(/t, 2)~(9(2)  [ imA <~O, lt=V+X2+tz)t2 forsome real (v,x, t)} , 

respectively. (The factors of 1/v/-a etc. have been included in order to give Fu 
and F~ unit determinants; recall that a was assumed to be non-vanishing so there 
is no serious ambiguity.) These sections are no longer invariant under the sym- 
metry due to the insertion of the factors of e iu/2. On twistor space, the action of 
the symmetry is just 0,, and the action of the symmetry on a section s of E in the 
frames Fu and F~ is 
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o) 
We have therefore produced frames of E which, although not invariant, have their 
/~-dependence in normal form. 

On 2 = 2 t h e  frames Fu and F~ are related by Fu=F~P, where P is given by the 
formula 

P(/t, ,~) = l ~ _ ~ ( e i l ,  b -T- e;iub-). 

Thus we see that P is a patching function for the bundle. 
The transform from P(/z, 2) to ~,(x, t) is the inverse scattering transform. From 

the point of view of both the inverse scattering and the Ward transform (cf. sec- 
tion 2) one reconstructs ~ from P by finding F,  and F~, matrix functions of  
(x, t ,2),  such that 

F~(x, t, 2) =F~(x, t, ; t)P(2x+22t,  2 ) .  

This is a Riemann-Hilbert  problem for each fixed (x, t) with F~(x, t ,2) holo- 
morphic on im ;t >/0 and F~ (x, t, 2) holomorphic on im ;t ~< 0. Such parametrized 
Riemann-Hilbert  problems, in general, are known to have a solution for all but a 
complex codimension-one subset of values o f x  and t. The solution is unique up 
to left multiplication of both Fu and F~ by a matrix depending only on (x, t). This 
freedom can be fixed by requiting that, as 2---,~, F~ = 1. 

Remark. In the above, we have avoided discussing the precise nature of the do- 
main and cover in (9 (2) with respect to which we are obtaining the Cech descrip- 
tion of the bundle. There is some novelty due to the fact that the sets as defined 
above are closed, not open as usually required for a Cech description, and, in- 
deed, the intersection of the two sets is of real codimension-two and is the com- 
mon Shilov boundary of the two sets. This reflects the geometry of the subset of 
(9 (2) swept out by sections corresponding to real points in spacetime. This does 
not make any practical difference to the correspondence, but in the case of non- 
analytic solutions global in x and t, it is essential as the domain on which the 
bundle E is defined includes all values of/t  for 2 complex but only real values of 
/z when 2 is real. 

Two distinct cases that one can consider are, firstly, the case where b(2) de- 
creases faster than e-ca-" as 121~ oo V c, and, secondly the case where b (2) is ana- 
lytic along 2 = ;(including 2 = ~ .  At least in the lineatized limit, b (2) rapidly de- 
creasing corresponds to ~u analytic as a function of x, and b (2) analytic corresponds 
to ~ rapidly decreasing since, at least in the linearized limit, b(2) is the Fourier 
transform of ~. 
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4.2. THE RAPIDLY DECREASING SOLITON SOLUTIONS 

The soliton solutions are characterized by b ( 2 ) = 0 .  However, the coefficient 
a(2)  is now allowed to have zeros at a selection of values of;t, {2~}, i=  1, ..., k in 
the upper half-plane. We will assume for simplicity that a has no multiple zeros 
or poles. This requirement, together with the fact that ad=  1 on 2 = 2 a n d  the 
condition that a be analytic on the upper half 2-plane, determines a (2) as 

k ( 2 - - ) . i )  
a ( 2 ) =  I-I 

,=1 ( , l - L )  

In particular a(;t) = 1/a(2) .  
The condition b = 0  implies that P=Ident i ty  so that the frames x/~Fu and 

( 1/x/~ )F~ are analytic continuations of each other and are therefore the same 
frame, 

F =  (e iu /2s_ ,  e - i u /2g+  ) = ( l / a )  (e iu /2s+,  e - i u / 2 J _  ) . 

The columns of F are solutions of the Lax pair that are globally meromorphic in 
). due to the factor of 1 / a = a .  Furthermore, det (F)  = a ( 2 )  so that the columns of 
F are proportional at 2 =2~: 

e iu /2s -  (,~.i) =Tie-iu/2s+ (2i) , (4.5) 

where the 7~ are non-zero constants. Similarly at 2 =2-~, 

e - i~ ' /2~-  (~ i )  = --Tieiu/Zs+ ( L )  • 

The data {(2~, 7i)}, i=  I, ..., k, determine the soliton solution. In section 2.5 of 
ref. [ 14 ] the soliton solutions are constructed explicitly by solving a "Riemann-  
Hilbert problem with zeros" which involves expressing F(x ,  t, 2) as an ordered 
product of"Blaschke-Potapov factors". 

4.3. THE TWISTOR DESCRIPTION 

The bundle, E, on (9 (2) corresponding to the soliton solution has a pair of 
holomorphic line subbundles, L and £. These are determined by the span of  the 
first and second columns of F, respectively; L is determined by the span of 
ei~'/2s_ on im 2>_-0 and e~/2s+ on im 2~<0, and similarly for £. The line bundles 
L and £ are linearly dependent at 2=2~. 

The line subbundles are both isomorphic to ~ ( -  k), the pull-back to (9 (2) of 
(9 ( - k )  on CP ~, the line bundle of Chern class - k .  This follows from the fact that 
the patching function for L is a on im 2 = 0  (since eiU/Zs_ =aeiU/Zs+ ) and a has 
degree k. We have then 

O-- ,~( -k ) - - ,E- - ,~(k ) - - ,O , 
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where the quotient E / g ( - k )  = ~ ( k ) =  ( ~ ( - k ) *  because sections o f E / ~ ( - k )  
are dual to those of ~ ( - k )  by taking the determinant of the representative sec- 
tions in E [recall that E is an SL(2, C) bundle]. 

The bundle E can be represented as a deformation of ~ ( - k )  @ • (k) that pre- 
serves the inclusion ~ ( - k ) - - , E .  Such bundles are completely characterized by 
their extension class, This can be represented as follows. 

Choose a cover { U.} for • (2) and a pair of sections, (st., s~,) constituting a 
frame F .  with unit determinant for E on each U. such that the st. are a fixed 
collection of trivializations of ~ ( - k )  with patching functions a.p. Then the 
patching data for E are 

(st.,s~)=(sta, s2a) (a~/3 a.ah.p" ~ 

(no summation is implied over repeated indices), where the freedom s~,--+s~ + 
g.st. with g.  holomorphic functions on U. leads to 

hap~ h.p + g. - a . ~  gp . 

Such a hap up to this equivalence constitutes an element h of H t(d~(2), 
~ ( - 2 k ) ) .  

For the purposes of the soliton solutions, h must be chosen so that E is invar- 
iant and satisfies the reality condition. With this end in mind, we cover ~ (2) by 
the open sets 

Uu = { (/t, 2) e (P (2) lim ,l> - ~}, U~ ={ (#, 2)e  (P(2) lim 2< - ¢ } ,  

for some ¢>0 chosen so that a does not vanish on the intersection. Then put 
sum =eiU/2s_ and s~ =ei~'/2S+. For s~ we cannot use e-°'/2g+ since this is propor- 
tional to st. at 2=2~. However, at ,l=2~, a = d e t ( F )  vanishes only to first order 
(by assumption), so that (2-2i)-l(e-i~'/2g+-~Fte-°'/2s_ ) is regular and 
transverse to s ~' except where 2 = 2j, j #  i. Extending this principle, we put 

Su = __1 ( e_ i , , / 2  ~ k a(2) ) a \ o+ --  2 ei '*/2s- 
i=l r i ( ~ t - A i ) a  ' (2i)  

where a' ( ~ )  is the derivative of a with respect to 2 evaluated at 2~. It can be 
checked that this section is regular and linearly independent of s~ on U~ and 
furthermore that det (s,',, s~ ) = 1. Similarly put 

s ~ = a  e-i"/2g_+ ~ _ - _, 
i=1 ~i(~.--2i)a (£i )  ei"/2s+ " 

This choice of frames leads to the patching data, a~ = a, and 

h., = - ,=,2 2y,(2_~-)a, (,~) + r, C2-2~)a' (2~) " 
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This is the representative of H t ( 0 (2), ~ ( - 2k) ) that determines E. 

267 

5. Conclusion 

There are many more techniques for studying solutions of the non-linear 
Schr/Sdinger and KdV equations such as the Krichever construction, B~icklund 
transformations etc. These generally amount  to finding some way to present the 
bundle on twistor space in such a way that one can perform the Riemann-Hilbert  
problem explicitly. These will be discussed in a subsequent work. 

Appendix A. Proof of theorem a 

We proceed by reducing eqs. ( 1.3a,b,c): 

OxB=0, [Ox-2A, O / - C ] = 0 ,  2 O x A - [ B , C ] = O t B .  (1.3a,b,c) 

We assume B is of type ct so the matrices A, B and C are given as follows: 

A =  (q  .Pq), B=  (01 00), C=  (w v t__tv). 

Then eq. ( 1.3a) follows immediately, and eq. ( 1.3c ) implies: p.,.= 0, u = -qx  and 
v= ½ r.,.. In particular, therefore, p is a function only oft. The final equation, ( 1.3b), 
when written out yields 

p t =  -q.~:,. + 2qq.~. +prx, 

rt = w.,. + 2 q w -  rr.,. . 

The remaining gauge freedom takes 
q=-g( t ) .  

2qt = r,..,. - 2rq.,. - 2pw , 

(A.la,b,c) 

(p, q, r ) ~  (p, q - p g ,  r+ 2 q g - g 2 p )  where 

When p vanishes identically the equations are completely soluble with solution 
(after using the remaining gauge freedom) 

p = 0 ,  q = E a t a n X ,  

1 
r= (Ea) 2 (Ea, X + c )  (Xtan X+  1 ) - b , ,  

u =  - q.,., 2v= r,., 

4a 4 w = X 2 ( eat X +  c) 2sec 2X+ 2 X( 2 Eat X-t- C) ( ~ a~ X +  c) tan X 

+ ( eact - 2ceat - 2~ 3a 3btt) sin (2X) 

+ d cos 2X+ 2 ~ 'aatt X 2 + 2 Eact X +  c 2,  
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where E4= 1, X = e a ( x + b )  and a, b, c and d are arbi trary real functions of  t, ex- 
cept that a is positive. The limiting case when the function a becomes identically 
zero gives the solution: 

q= - X  - t ,  r =  - b t  q . -cX 2 , 

u = X  -2,  v = c X ,  

w = b . X + d X Z + c t X 3 + c 2 X 4 ,  X = x + c ,  

where b, c and d are arbi t rary real functions of  t. We do not discuss here the 
behaviour of  the solutions when either p or a approaches zero. 

We now consider the generic case where p is assumed to be everywhere non- 
zero. Equation (A. 1 a),  when integrated with respect to x, gives the relation rp= 
qx - q2 + xpt + mr, for some gauge invariant  function rn (t) .  Equat ion (A. 1 c ) can 
be manipulated until  every term is an exact derivative with respect to x as follows 
(we first multiply by p 2 and take the first and last terms of  the r.h.s, as the subject ): 

[p2(2w--r2)  ].,. = 2  [p(pr) t  - p t ( P r )  --2pZqw] 

= 2 [pqx, + P ( Ptt x + m ,  ) - Pt pr -- pqrxx + 2pqqx r ] 

= 2 [Pqtx + p ( p t t x +  m , )  

+ ( p q x r -  q{pr}x)x - p r ( q x  -- qZ +PtX+ rnt) 

= [ 2pqt +PPttX z + 2 p m , x +  2 p q x r -  2pqrx --pZr2 ]x .  

Integrating we obtain the following expression: 

2pZw= 2pqt + 2 p q x r -  2pqrx "l'-ppttx 2 + 2 p r o , x +  n ,  (A.2)  

where n is an arbitrary function of  t. A gauge t ransformat ion takes n to n -  
4p2g, -2pptg ,  so g may be chosen so as to reduce n to zero. The  residual gauge 
freedom has g=golP1-1/2,  where go is a constant.  Compar ing eqs. (A . l b )  and 
(A.2) we obtain the following evolut ion equat ion for q: 

Pqt = (pr)x_~ - 4 (pr)qx + 2 ( p r ) x q - p p t t x  2 -- 2 p m t t x  

=q.~.~: , -6q~-4qx(ptx  + mt)  + 2P tq -pp t t x2 - -2pmt t x  . (A.3)  

Make the redefinit ion I P 11/2q, = q + ~ (ptx  2 + 2 m t x +  k) ,  where k ( t)  is a solution 
of  the ODE 

2kt = (p tk+  m z ) / p .  

The freedom in choice of  k and the gauge freedom in q both t ransform q' to q' + c, 
where c is a constant.  In terms o f q ' ,  eq. (A.3) reads 

4pq't = q.~x - 6 I Pl , /2q~2 + 2q~,. (Pt x + mr) . ( A.4 ) 
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Next define vector fields E and F by the formulae 

0 
2E=  IPl-~/2 0x' 

2 F =  IPl t /2 (  0 ptx+m, O) 
p 0} 2p 0x " 

Note that E and F commute, so they are co-ordinate vector fields, E =  O/Ox' and 
F= O/Ot', for some new co-ordinate system (x',  t' ); in fact (x' ,  t' ) are given by 
the following formulae: 

x '=21Pl~ /2x+f ( t ) ,  f ( t ) =  - -  
IP[ l/2mt 

P 

t '=h( t ) ,  h,=2plPl -~/z (A.5) 

In the new co-ordinate system eq. (A.4) now reads 

! q'c =qx': , 'x ' -3(q" ) 2. (A.6) 

t t Define u ' = - q x ,  and differentiate eq. (A.6) with respect to x ,  to obtain an 
equation for u'. Dropping primes, one obtains the equation 

ut = Ux~x + 6uux . (A.7) 

This is the Korteweg-de Vries equation! The upshot of this discussion is that, 
modulo gauge and co-ordinate transformations, one might as well have begun 
with p = l and all integration constants may be taken to be zero. Thus one arrives 
at the statement of theorem ct. [] 

Example. Consider eq. (A.3), with p =  1/4, rn=3t 2, q = w ( x ) - 2 x t + 8 t  3. Then 
eq. (A.3) becomes just x =  w~.~x- 6w 2. Defining y =  wx we obtain Painlevb's equa- 
tion of  the first kind: 

y .~=6y2+x.  (A.8) 

The co-ordinate transformation of eq. (A.5) in this case is x' = x +  6t 2, t' = t. The 
corresponding solution of eq. (A.7) (the KdV equation) is given by u =  
- 2 y ( x - 6 t  2) -2 t .  

Appendix B. Proof of theorem [i 

Consider eqs. (1.3a,b,c) when B is of type 13. i.e., B=diag(x ,  - x ) .  The avail- 
able gauge freedom consists of diagonal elements of G, depending only on t. Then 
eqs. (1.3b) and (1.3c), withA and C given in, terms of p, q, r, u, v, w, as in the 
beginning of appendix A, give the following equations: 
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~.,.=0, q x = x , ,  p.,.=2mt, r . , .=--2mv,  

V x - q t - p w + r u =  0 ,  (B.I )  

u , . - p , - 2 q u +  2pv=O,  w. , . - r t  + 2 q w - 2 r v = O  . (B.2) 

Integrating eq. (B. 1 ), one finds expressions for the quantities q and ~. 

p r  + A t ,  2 A = x Z K t + 2 x m t + 2 n , .  (B.3) q=A, . ,  v = -  2 x  

Here m and n depend only on t. Also eq. (B.2) may now be written as follows: 

p.,=,. -- 2xpt -- 2 qp.,. + x p v =  0 = r.,:,. + 2xrt + 2qr.~ + 4~crv . ( B.4  ) 

Now make the substitution p =  CxeZ'l 7 j, r =  ~xe- ~t 7 j '  , where A is given in eq. (B.3) 
and ~ = 1 or i and is chosen so that  the quanti ty ~x is real. Under  the remaining 
gauge transformations,  ~ a n d  7 j '  t ransform by 7J~27Jand 7J '~  ( 1 / 2 ) 7  j ' ,  where 
2 is a constant such that  the diagonal matrix diag(2, 1/2) belongs to G. Then in 
terms of  ~ a n d  7 j ' ,  eq. (B.4) becomes the following: 

~,=,. + 2 (xx, + m , )  ~ - 2 x ~ ,  - 2 ~ 2 x  2 ~P-" ~ '  = 0 ,  

~ -  2 ( x x ,  + m,  ) ~',. + 2 x ~ ' ,  - 2Ezxz  TJ"-~=O . (B.5) 

Next make the co-ordinate t ransformation x '  = ~ ( x x +  m ), t' = f ( t )  with 2 f  = oc. 
One then has 

O / O x ' = ( ~ x ) - I O / O x ,  O / O t ' = 2 ( ~ x ) - t [ O / O t - x - I ( x t c , + m t ) ~ / O x ]  . 

Equation (B.5) becomes in the new co-ordinates 

~.~,x, - e -  t ~ c  - 2 ~ 2  7J' = 0 ,  ~tt.'x-,x, + ~ - t ~J~, - 2 ~ ' 2  ~ t t=  0 . (B.6a,b) 

For the S L ( 2 , ~ )  case, all quantities are real, ~= 1 and eqs. (B.6) become the 
coupled system (1.4a).  For the SU(2)  and SU( 1, 1 ) cases one has E=i,  and x, 
m, n and A are purely imaginary; also the quantities r, w and 7 j '  are the negative 
complex conjugates of  the quantities p, u, and ~, respectively, in the SU (2) case 
and are their complex conjugates in the SU( 1, 1 ) case. Then eq. (B.6b) is the 
negative complex conjugate of  (B.6a) in the SU (2) case is its complex conjugate 
equation in the SU( I, 1 ) case. Thus in the SU(2)  case, eqs. (B.6) reduce to the 
single equation 

i~P,. = - 7%.,.. - 217Jl z 7 j . (B.7) 

Equation (B.7) is the attractive non-linear Schrrdinger equation for the un- 
known ~ ( x ' ,  t' ). For the SU( I, I ) case, the remaining equation becomes the 
following equation: 

i 7Sc = - ~.,...,.. + 217Jl 2 ~ .  (B.8) 
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Equation (B.8) is the repulsive non-linear Schrrdinger equation for the un- 
known 7'(x',  t' ). 

We see that, modulo gauge and co-ordinate transformations, we might just as 
well have taken x to be constant a priori, and put all the integration constants 
equal to zero. Thus we arrive at the statement of  theorem [3. [] 
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